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This paper describes transport properties of linear water waves propagating within a square array of fixed
square cylinders. The main focus is on achieving the conditions for all-angle-negative-refraction �AANR�
thanks to anomalous dispersion in fluid-filled periodic structures. Of particular interest are two limit cases
when either the edges or the vertices of the cylinders come close to touching. In the former case, the array can
be approximated by a lattice of thin water channels �for which dispersion curves are given in closed form and
thus frequencies at which AANR occurs� whereas in the latter case, the array behaves as a checkerboard with
cells consisting either of water tanks or rigid cylinders �for which standing modes are given in closed form�.
The tools of choice for the present analysis are, on the one hand, the finite element method which solves
numerically spectral problems in periodic media, and on the other hand, a two-scale asymptotic method which
provides estimates of dispersion curves and associated eigenfields through a lattice approximation �namely thin
water channels between rigid cylinders�. Simple duality correspondences are found based on fourfold symme-
try of square water checkerboards that allow us to get some insight into their spectra. Last, some numerical
evidence is provided for water waves focusing with no astigmatism through such arrays, when they are of finite
extent.
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I. INTRODUCTION

Veselago, in 1967, postulated the existence of materials
with simultaneously negative permittivity ��� and magnetic
permeability ��� which were shown to have a negative re-
fractive index �1�. In his visionary paper, Veselago also pro-
posed to use negative refraction to make a convergent flat
lens. Thirty years afterwards, in 2000, Pendry further showed
it is possible to design a flat lens that overcomes the diffrac-
tion limit through enhancement of evanescent waves via
plasmon resonances occurring on the boundaries of the slab
lens when its refractive index is close to −1 �2,3�. Pendry’s
perfect lens can be generalized to checkerboard metamateri-
als satisfying a mirror antisymmetry �4�. The experimental
demonstration of negative refractive index materials at GHz
frequencies by Smith and co-workers in 2000 �5� fueled the
research in the area of metamaterials which are structured at
subwavelength length scales �6� �one can regard them as al-
most homogeneous�. Using photonic crystals �PC� �7�, a very
similar negative refraction effect at all angles of incidence
was independently predicted in �8–11�. Alike photonic crys-
tals, negative refraction has been demonstrated in sonic crys-
tals, also leading to lensing effects �12,14�.

Recently, some progress has been made on theoretical
analysis �15–19� of the band structures and the possibility of
the existence of band gaps for liquid surface waves propa-
gating in periodic structures. Among others, the multiple
scattering method, which is particularly well suited for arrays
of circular cylindrical bodies, the plane-wave method which

tackles noncircular geometries and the variational method
have been used. In �18�, Torres et al. further investigated
experimentally Floquet-Bloch water Rayleigh waves by vi-
sualizing the patterns of liquid surface waves propagating
over a bottom with periodically drilled holes. Focusing effect
was further investigated both theoretically and experimen-
tally by Hu et al. �13� using a square array of circular cylin-
drical holes. But to our knowledge, nobody addressed the
question of stop bands and super-focusing effects for water
waves propagating in arrays of square cylinders with either
edges or vertices nearly touching: These two limit cases cor-
respond, respectively, to a lattice of thin intersecting water
channels and a rigid checkerboard with one-half of its cells
filled with water. In the former case, we are able to carry out
analytical estimates for dispersion curves and most impor-
tantly for the working frequency of the liquid lens. In the
latter case, standing modes are well approximated by analyti-
cal resonances of a square water tank.

II. GOVERNING EQUATIONS

A. Equations in a homogeneous medium

Let us denote by � the open bounded set in R3 within
which lies the transverse components of the fluid. The con-
servation of momentum in inviscid fluids leads to so-called
Euler’s equations,

�u

�t
+ �u · ��u +

�p

�
= g in � , �1�

where u is the velocity field, p is the pressure, � is the fluid
density, and g is the vector of gravity force, g=−ge3, where
g denotes the acceleration caused by gravity.*sebastien.guenneau@fresnel.fr
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We further assume that the fluid is incompressible and
irrotational

� · u = 0, � � u = 0 in � . �2�

There exists a velocity potential � such that

u = �� in �̄ , �3�

where �̄ stands for the fluid region � together with any fixed
interface in contact with it �such as some water tank bound-
aries�. We also have

�2� = 0 in � . �4�

So far, the Laplace equation �4� does not manifest a wave
character: Waves are induced by the boundary conditions on
the free surface separating the liquid and air.

Let x3=��x1 ,x2 , t� be the equation of the free surface. The
pressure is prescribed to be equal to the constant atmospheric
pressure p0 on x3=��x1 ,x2 , t�, and the surface tension is ne-
glected. Hence, �1� and �3� lead to Bernoulli’s equation

��

�t
+

����2

2
+

p0

�
+ g� = f�t� on x3 = � . �5�

Assuming that f�t� is incorporated into � and that liquid
fluctuations are small, i.e., ��−h��1, where h denotes the
mean value of �, and also � ��

�xj
��1, j=1,2, differentiation of

�5� with respect to t leads to the linearized equation

�2�

�t2 + g
��

�t
= 0 on x3 = h . �6�

Using the ansatz

u3 =
dx3

dt
=

��

�t
+

��

�x1

�x1

�t
+

��

�x2

�x2

�t
�

��

�t
, �7�

Eqs. �3� and �6� lead to Poisson’s condition

�2�

�t2 + g
��

�x3
= 0 on x3 = h . �8�

Altogether, � is the solution of the following system �20,21�:

�2� = 0 for x3 � � 0,h � ,

�2�

�t2 + g
��

�x3
= 0 for x3 = h ,

n · �� = 0 for x3 = 0, �9�

where the last boundary condition accounts for a no-flow
condition through the plane x3=0 �this stands for the fixed
surface at the bottom of the water tank�.

B. Dispersion relation in a liquid without inclusions

If we look for solutions of �9� in the form

��x1,x2,x3,t� = f�x3�e−i�wt−	1x1−	2x2�, �10�

Laplace’s equation leads to

f��x3� − 	2f�x3� = 0, �11�

with 	=�	1
2+	2

2. Hence, the Neumann boundary condition in
�9� gives

f�x3� = A cosh�	x3� . �12�

Using now the boundary condition at x3=h, we obtain the
dispersion relation


2 = g	 tanh�	h� . �13�

For the applications discussed later in this paper, this equa-
tion should be refined to take into account the capillarity
through the existence of the surface tension �. Indeed, the
pressure of the surface of the liquid is equal to p0�= p0

−��2�, where �2�

�xj
2 , j=1,2, accounts for the curvature of the

liquid surface.
In this case, Poisson’s condition �8� becomes

�2�

�t2 + g
��

�x3
−

�

�

��2�

�x3
= 0, �14�

so that the dispersion relation is reexpressed as


2 = �g +
�

�
	2		 tanh�	h� . �15�

In the literature, Eq. �15� is sometimes written 
2=g	�1
+dc

2�tanh�	h�, where dc=	�� / ��g� is the capillarity.

C. Helmholtz equation on a free surface
for the reduced potential

We can now look for solutions in terms of the reduced
potential �,

��x1,x2,x3,t� = Re���x1,x2�cosh�	x3�e−i
t� , �16�

which leads us to the Helmholtz equation

�2� + 	2� = 0, �17�

where 	 is the spectral parameter linked to the wave fre-
quency through the dispersion relation �15�.

Finally, the vertical displacement of the liquid surface � is
related to the potential � by

��x1,x2,t� = Re�−
i


g
��x1,x2�e−i
t	 . �18�

D. Neumann boundary conditions on rigid cylindrical
inclusions immersed into the fluid

In the sequel we shall consider immersed bodies within
the fluid. Hence � is not simply connected and �2� does not
necessarily imply �3�: There may be additional so-called co-
homology terms in the potential �. To avoid that, the so-
called no-flow condition should be taken into account on the
boundaries between fluid and structure: Let s�x1 ,x2 , t�=0 be
the equation describing the boundary S of each immersed
body, then
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ds

dt
= u · �s +

�s

�t
on S . �19�

This expresses the kinematic property that there is no trans-
fer of matter across the boundary.

Taking into account �3�, the no-flow condition �19� leads
to

��

�n
= −

1

��s�
�s

�t
= un on S , �20�

where un denotes the normal component of the velocity field
u. This means that the normal velocity of particles is con-
tinuous across a physical boundary.

If S is a fixed �rigid� interface, �20� simplifies to

��

�n
= 0 on S , �21�

which is a natural boundary condition �homogeneous Neu-
mann boundary condition�.

E. Floquet-Bloch water waves

Let � be functions of spatial variables of finite energy in
Y = �0;1�2 �square integrable and with a square integrable
gradient� and such that

��x1 + 1,x2 + 1� = ��x1,x2�ei�k1+k2�, �22�

where the Bloch vector k= �k1 ,k2��Y�= �0,�2, where Y� is
the so-called first Brillouin zone. �See Figs. 1–4.� This
square cell Y� in reciprocal space can be further reduced to a
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FIG. 1. �Color online� Finite element method �FEM� computa-
tions of dispersion surfaces associated with water waves propagat-
ing within a square array of pitch 10 mm consisting of fixed square
cylinders of side length 0.9487 mm immersed in water �the filling
fraction of cylinder in water F=0.9�. Horizontal axes: Components
k1 and k2 of the Bloch vector describing the area of the first Bril-
louin zone �XM. Vertical axis: Wave frequency f =
 / �2� in Hz.
The depth of water is h=6 mm and the capillarity dc=0.109 mm.

FIG. 2. �Color online� �a� Square array of square cylinders of
pitch 1 where the blue region is filled with water; �b� corresponding
reduced Brillouin zone �XM where �= �0,0�, X= �0,�, and M
= � ,�; �c� selected region of the square array showing four square
cylinders separated by four thin bridges ��

j of thickness �h, ��1,
and length l, within which water flows �blue region�. �d� Corre-
sponding lattice structure with a central node 0 and four nodes
1 , . . . ,4 at which the potential takes the values � j, j=0, . . . ,4 sat-
isfying the boundary conditions �38� and �39�.

M
�

FIG. 3. �Color online� Schematic representation of the EFS for
the water waves propagating freely �left-hand circle� and the Bloch
waves in the crystal �right-hand circle�. The dashed line shows the
conservation of the tangential component of the wave vector.
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FIG. 4. �Color online� Comparison of FEM computations of
dispersion curves �continuous curves� against analytical estimate
�41� �dotted curves� for a filling fraction of cylinder in water of 0.9.
Horizontal axis: Projection of the Bloch vector on the first Brillouin
zone �XM. Vertical axis: Wave frequency f =
 / �2� in Hz. The
starred curve corresponds to surface waves propagating in water
along the �M direction, as given by Eq. �15�. The depth of water is
h=6 mm and the capillarity dc=0.109 mm.
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square triangle �MX with vertices �= �0,0�, M = �0,�, and
X= � ,�, as depicted in Fig. 2�b� if the inclusion within the
cell Y in physical space exhibits a fourfold symmetry.

F. Variational formulation and well-posedness

Multiplying �17� by a smooth test function � and using
Green’s formula and �21�, we obtain the weak form of the
water-wave equation,

− 

Y

�� · �� dx1dx2 + 	2

Y

�� dx1dx2 = 0. �23�

This expression is then discretized using test functions �
taking values on nodes of a triangular mesh of the basic cell
Y. To enforce Floquet-Bloch conditions in �23�, it is enough
to link values of V on opposite sides of the basic cell Y �see
�22� for electromagnetic waves�. The finite element formula-
tion was implemented in the commercial package COMSOL
multiphysics �23�.

The resolvent of the operator associated with the qua-
dratic form �23� is compact, hence for a given Bloch vector k
the spectrum is a countable set of isolated eigenvalues tend-
ing to infinity that can be ordered by increasing number
	n�k� �with the integer n taking into account the multiplicity
of a given eigenvalue 	n�. More precisely, these eigenvalues
can be numerically found using the Rayleigh quotient form
of �23� and invoking the Courant-Fischer min-max principle
�24� which says that for all n�1, one has

	n
2�k� = min

Un−1�Hn−1

max
0���Un−1

�



Y

����2dx1dx2



Y

���2dx1dx2

, �24�

where Hn is the set of subspaces of dimension n of the
infinite-dimensional Hilbert space H��k ,Y�= ��� ,���
�L2�Y�� �L2�Y��2 , � satisfies �22��. The larger n, the
finer the approximation of H��k ,Y� by Hn �density result�.
The numerical counterpart is nothing but the iterative Lanc-
zos algorithm which is well suited for large sparse matrices
appearing in finite element methods �FEM� �22�.

Now, each eigenvalue depends smoothly upon the Bloch
parameter k, so that when k describes the Brillouin zone, we
end up with a band spectrum

�Bloch = �
n=1

�

�min
k�Y�

	n�k�,max
k�Y�

	n�k�� . �25�

Such a spectrum is numerically computed in the next section
and represented thanks to a so-called surface dispersion dia-
gram in Fig. 1: Such a three-dimensional representation
seems to be quite natural as we need two horizontal axes for
the components of the Bloch vector k1, k2 which runs
through the Brillouin zone Y�, and one vertical axis for the
wave frequency. For simplicity we only depict from herein
two-dimensional diagrams �dispersion curves� assuming that

�min
k�Y�

	n�k�,max
k�Y�

	n�k�� = � min
k��Y�

	n�k�, max
k��Y�

	n�k�� ,

where �Y� denotes the boundary of Y�. In other words, we
assume that to characterize completely the spectrum it is
enough to describe merely the edges of the first Brillouin
zone. We can see that this statement is indeed satisfied if we
compare the surfaces of Fig. 1 with the continuous disper-
sion curves of Fig. 4 �note that we show only the reduced
Brillouin zone �MX as depicted in Fig. 2�b�, thanks to the
fourfold symmetry of the structure�. Some simple proof can
be found in the literature in the case of dilute inclusions, by
considering a small perturbation in the plane-wave coeffi-
cients of Floquet-Bloch waves propagating within a homo-
geneous medium and noting that gaps are opening along the
edges of Y� due to degeneracy splits of the eigenstates �25�.
But nonetheless, we are not aware of a more general math-
ematical proof for this result even in the case of convex
inclusions of finite area fraction.

III. BAND DIAGRAMS AND NEGATIVE REFRACTION

We can now explore water waves undergoing negative
refraction in a crystal that displays the all-angle negative
refraction effect. The square array of rigid cylindrical fibers
of square cross section is embedded within water. Our aim is
to achieve some focusing effect of water waves using nega-
tive refraction, in a way similar to what was done for elec-
tromagnetism �8–10�. Our contribution compared with the
numerical and experimental work on water waves of �19� is
to provide an asymptotic model for the lensing effect in the
case of densely packed square cylinders. We further compare
approximate dispersion curves against that given by finite
element computations when the inclusions come close to
touching �plane-wave expansion method used in �19� is not
well-suited in this case�. We also give some numerical proof
of lensing effect for a checkerboard water lens.

A. Analytical estimates for square cylinders
with nearly touching edges

In this section we derive an asymptotic approximation of
the potential within thin bridges ��

j , j=1, . . . ,4, between
close-to-touching square cylinders, as shown in Fig. 2. We
will see that when � tends to 0, the limit problem reduces to
a one-dimensional Helmholtz equation. This equation is sub-
ject to boundary conditions set on a lattice. The idea under-
lying this analysis comes from an analogous model in con-
tinuum mechanics whereby one can approximate the acoustic
vibrations of a phononic crystal consisting of a square array
of close-to-touching voids by that of a lattice structure con-
sisting of homogeneous strings of constant density �26�.

Using local coordinates, we have

��
j = ��x1,x2�:aj � x1 � bj, �x2� � �hj/2� , �26�

where � is a small nondimensional parameter, and aj, bj, and
hj are given constants denoting, respectively, the end points
and thickness of the jth bridge. From �17� and �21�, we know
that the potential � j�x1 ,x2� satisfies the Helmholtz equation
within ��

j ,
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�2� j�x1,x2� + 	2� j�x1,x2� = 0, �27�

together with the homogeneous Neumann boundary condi-
tions on the transverse boundaries

 � � j

�x2


x2=��hj/2
= 0. �28�

This system can be supplied with appropriate boundary con-
ditions at the ends of the bridge, namely for x1=aj and x1
=bj �these conditions will be specified in the sequel�.

Let us introduce the scaled variable

� =
x2

�
, �29�

so that �� �−hj /2, hj /2� within ��
j , and

�2� j

�x2
2 =

1

�2

�2� j

��2 . �30�

The rescaled Helmholtz equation in �1
j is

�� 1

�2

�2

��2 +
�2

�x1
2	 + 	2�� j = 0. �31�

The potential � j is approximated in the form

� j � � j
�0��x1,�� + �2� j

�1��x1,�� . �32�

To leading order we obtain �see �28� and �31��

�2� j
�0�

��2 = 0, ��� � hj/2, �33�

 � � j
�0�

��


�=�hj/2
= 0. �34�

Hence, � j
�0�=� j

�0��x1� �it is � independent�. Assuming that
� j

�0� is given, we derive that the function � j
�1� satisfies the

following model problem on the scaled cross section of �1
j :

�2� j
�1�

��2 = −
�2� j

�0�

�x1
2 − 	2� j

�0�, ��� � hj/2,

 � � j
�0�

��


�=�hj/2
= 0. �35�

The condition of solvability for the problem �35� has the
form

d2� j
�0�

dx1
2 + 	2� j

�0� = 0, aj � x1 � bj . �36�

Hence, we have shown that to the leading order we can ap-
proximate the potential � within the thin bridge ��

j by the
function � j

�0� which satisfies the Helmholtz equation in one-
space dimension �a harmonic oscillator�.

Let us now assume that all bridges have the same thick-
ness �h and length l and intersect orthogonally at nodes j as
shown in Fig. 2�b�. The Helmholtz equation �36� is now set
in �0, l� and if we denote � j the potential at node j, �36� is

supplied with the boundary conditions � j
�0��0�=��0,0� :

=�0 and �1
�0��l�=��l ,0� : =�1, �2

�0��l�=��0, l� : =�2, �3
�0��l�

=��−l ,0� : =�3, and �4
�0��l�=��0,−l� : =�4.

Considering first the case sin�	l��0, we obtain

� j
�0��x1� = �0 cos�	x1� +

� j − �0 cos�	l�
sin�	l�

sin�	x1� ,

�37�

where 	 is the spectral parameter satisfying the dispersion
relation �15�.

Equilibrium at the central node writes

0 = �
j=1

4  d2� j
�0�

dx1
2 

x1=0

=
1

sin�	l�
��1 + �2 + �3 + �4 − 4�0 cos�	l�� . �38�

Note that the same holds true for the displacement of the
node in the plane perpendicular to a lattice of homogeneous
strings of constant density �26�.

The Floquet-Bloch condition leads to

�1 = e−ik1l�0, �2 = e−ik2l�0,

�3 = eik1l�0, �4 = eik2l�0, �39�

where k= �k1 ,k2� is the Bloch vector.
Substituting the quasiperiodicity conditions �39� and �38�,

we finally obtain

cos�k1l� + cos�k2l� − 2 cos�	l� = 0. �40�

For the case sin�	l�=0, there exists, for any k, standing wave
modes corresponding to internal vibrations of bridges, with
no displacement at the nodes.

Altogether, the dispersion relation in thin-bridges writes

sin�	l��cos�k1l� + cos�k2l� − 2 cos�	l�� = 0. �41�

We note that this dispersion relation was also obtained in
�26� for an analogous problem of harmonic vibrations of a
lattice of strings, as discussed above.

For a wave propagating in the �X direction, k1=k2, so that
�41� reduces to 	=k1. This has important practical conse-
quences as it gives the frequency at which focusing of water
waves occurs for a slab lens consisting of close to touching
square cylinders.

B. Analysis of band diagrams

To analyze the transport of water-wave energy within the
array of cylinders, we need to link the dispersion relation to
that of propagation of energy. This can be done in a way
similar to what was discussed for electromagnetism in �9�.

First, we note that the group velocity of Floquet-Bloch
water waves is defined as �27�

Vg = �k�
� =
�


�k1
e1 +

�


�k2
e2. �42�

Note that this group velocity corresponds to the speed at
which the amplitude of the envelope of the water wave
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propagates, whereas the phase speed propagates with the
speed of, say, the crest of the waves. The group velocity is
easily seen to be equal to the average velocity �taken over the
basic cell� of the energy flow.

Second, we note that the phase velocity V� of water
waves measures the phase difference �, i.e., a time delay,
between the motion of two particles on the free surface �.
The wavelength is the distance between two particles whose
motion have the same phase. Note that acoustic waves
propagating within a compressible medium have a velocity
independent of wavelength �no dispersion�, unlike surface
water waves. We further note that surface water waves
propagating in deep water propagate with a phase velocity
which increases with wavelength, similar to the phase veloc-
ity of light �which actually behaves as the inverse of the
refractive index�. This is easily seen by taking h tend to
infinity in �15�. On the contrary, surface water waves in shal-
low water �h�1 which is our case� behave the other way
around.

The essential condition for the all-angle-negative refrac-
tion �AANR� effect is that the equifrequency surfaces �EFS�
should become convex everywhere about some point in the
reciprocal space, and the size of this EFS should shrink with
increasing frequency. Further the EFS should be larger than
the free space dispersion surface and the frequency should be
within the first Bragg zone �8–10�.

In order to understand how we will choose the working
frequency let us recall some basic elements. We consider a
slab of crystal, i.e., a crystal finite along one direction and
infinite along the two others. The reasoning is based on the
fact that due to the periodicity of the structure the tangential
component of the incident wave vector should be conserved,
that is to say that the tangential components of the excited
Bloch waves and the incident wave should be equal. The
interested reader can find a more detailed analysis of the last
point in �9�. The graphical representation in Fig. 3 may help
understand how the negative refraction occurs. The circle
centered on � represents the EFS of the waves propagating
freely on the water surface without any inclusion, while the
circle centered on the � points stands for the EFS for the
Bloch waves propagating in the crystal. Note that this is an
idealized sketch as the EFS of the Bloch mode are usually of
more complex shape. We consider an incident plane wave
whose wave vector is represented by the arrow starting from
�. We assume that the interface of the crystal is perpendicu-

lar to the direction �-M, thus the Bloch waves that could be
excited are given by the intersection between the dashed
lines and the EFS of the Bloch waves in the crystal �conser-
vation of the tangential component of the wave vector�. The
propagation of the energy of the Bloch wave is given by the
normal to the EFS and directed toward the ascending side of
the band. Thus if the EFS shrinks around the point M when
the frequency increases one obtains a negative refraction as
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FIG. 5. �Color online� Same as Fig. 4 but for a filling fraction of
cylinder in water of 0.7.
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FIG. 6. Isofrequencies corresponding to dispersion curves of
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FIG. 7. Water-wave lensing for one source at frequency f lens 1

=6.28�2 Hz, through an array of 212 square cylinders of side
length 9.5 mm. The pitch of the array is 10 mm, the depth of water
is h=6 mm, and the capillarity dc=0.109 mm.
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shown by the two arrows on the right-hand part of Fig. 3.
Note that the two solutions exists in the slab but in a semi-
infinite crystal an outgoing wave condition would allows us
to eliminate the Bloch mode corresponding to the left-most
arrow.

As can be seen in Fig. 4, the analytical formula �41� com-
pares very well with the finite elements computations for a
filling fraction of 0.9. The larger the filling fraction, the bet-
ter the approximation, as is obvious from Fig. 5. We note that
for a filling fraction of 1, we are left with only water so that
the dispersion relation reduces to that of surface waves
propagating at the interface between water and air. The
starred curve in Fig. 4 corresponds to this case for a depth of
water of h=6 mm. Its intersection with the acoustic band
provides us with the frequency at which negative refraction
occurs. We note that this frequency is around f lens 1
=2 Hz, which is a straightforward consequence of �15� and
�41�. We check in Fig. 6 that the corresponding EFS satisfy
the criteria for AANR and we indeed observe on Fig. 7 that
for a harmonic source set at this frequency, there is indeed an
image forming on the other side of the array.

It is remarkable that a water-wave image occurs for such
a densely packed array of cylinders. In the thin bridges be-
tween the cylinders, the potential is given analytically by
�37�. We also note that boundary layers may occur on the
walls of the thin channels as already analyzed in �20,28� for
magnetohydrodynamics, hence the water profile is flattened
in the thin channels, which may result in slow surface waves.
But after an intermediate regime, negative refraction will
take place anyway, and an image will eventually form on the
other side of the lens.

For a filling fraction of 0.5, the corresponding equifre-
quencies and the numerical evidence of super-lensing are
shown in Figs. 8 and 9, where the source is now set a the
frequency f lens 2=6.44 Hz. In this case, there is more space

for the water to flow between cylinders, hence the image is
more apparent. In Fig. 10, we numerically show, using two
sources set at the same frequency f lens 2, that the flat lens
exhibits no astigmatism, as was predicted by Veselago long
ago for a slab of negative refractive index n=−1 �1�.

We now report in Fig. 11 the evolution of the width of the
first partial gap along the �M direction against the filling
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FIG. 8. Isofrequencies corresponding to dispersion curves of
Fig. 5. FIG. 9. Water-wave lensing for one source at frequency f lens 2

=6.44 Hz, through an array of 212 square cylinders of side length
8.4 mm. The pitch of the array is 10 mm, the depth of water is h
=6 mm and the capillarity dc=0.109 mm.

FIG. 10. Water-wave lensing for two sources at frequency
f lens 2=6.44 Hz through the same array as in Fig. 9. The slab lens
exhibits no astigmatism, since its effective refractive index is −1.
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fraction of cylinder in the basic cell. As can be expected, the
width of the gap vanishes in the limit cases of dilute and
densely packed cylinders: For both limit cases F=0 and
F=1, the cylinders are no longer present and water flows
freely. Interestingly, the curve reaches its maximum around a filling fraction F=0.16 for which there is no obvious expla-

nation.

C. Water waves in checkerboards

Let us now rotate the square cylinders within the square
array. �See Figs. 12–16.� We report in Fig. 13 the evolution
of the width of the first complete gap with respect to the
angle of rotation. Not surprisingly, the curve reaches its
maximum for a rotation of  /4, whenever the inclusion is
allowed to rotate through such an angle: This is a conse-
quence of the fourfold symmetry of the inclusion and the
array. But when the inclusion becomes too large �its filling0
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FIG. 12. �Color online� �a� Square array of pitch 1 of square
cylinders of side length l0=0.7071 mm which make an angle  /2
with the lattice vectors �the blue region is filled with water�. �b�
Same array now filled with nonrotated square cylinders of side
length lp=1 /2p. �c� Typical eigenmode �of say, type I� associated
with the square array in �a�. �d� Water tank of side length l0 whose
frequencies approximate that of localized modes of �c�. �e� Typical
eigenmode �of say, type II� associated with the square array in �a�.
�f� Left: water tank of side length l0 whose resonant frequencies
approximate that of localized modes of the chessboard in �b�. Right:
reconstruction of an eigenmode of cavity of side length l0 �left
panel� through  /2 rotation of an eigenmode of cavity of side lenth
lp; this eigenmode is also recovered from a  /4 rotation of the
localized mode in �d�: Localized eigenmodes are self-similar in
chessboards, up to a  /4 rotation.
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FIG. 11. �Color online� Evolution of the width of the partial gap
�in Hz� along the �M direction, with respect to the filling fraction F
of the square inclusion in the unit cell.
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FIG. 13. �Color online� Evolution of the width of the full gap �in
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square inclusion in the unit cell. We note that above 0.48 the rota-
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FIG. 14. �Color online� FEM computations of dispersion curves
�continuous curves� for a checkerboard consisting of a square array
of square cylinders in water for a filling fraction 0.49, when rotated
by an angle  /2. Horizontal axis: Projection of the Bloch vector on
the first Brillouin zone �XM. Vertical axis: Wave frequency f
=
 / �2� in Hz. The dotted and starred curves, respectively, stand
for the first three frequencies of water tanks of length l0

=0.7071 mm and l1=0.5 mm. The depth of water is h=6 mm and
the capillarity dc=0.109 mm.
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fraction goes over F=0.5�, the curve remains monotonic but
it ends for a rotation angle which is the last admissible one.
We also note that the higher the filling fraction, the steeper
the slope of the curve. To enlarge the gap the best we can,
while keeping enough space for water to flow between cyl-
inders, we therefore choose a filling fraction of F=0.49 and
a rotation angle of  /4. In this way, we generate a checker-
board consisting of water �white cells� and square cylinders

�black cells�. Such structure, which bears some resemblance
with that studied, has also some possible connection with the
Babinet principle, which says that for an infinitely thin
checkerboard lit from above in the subwavelength regime,
transmission and reflection are perfectly balanced �they are
both equal to one-half�, as discussed in �29�. Nevertheless, in
our case the water rather flows in the transverse direction,
but we can clearly see from Fig. 16 that the lensing effect is
partly spoiled by reflections on the interface between the
checkerboard lens with free water, even though the source is
set at a frequency fcheckerlens=5.35 Hz for which negative
refraction occurs, as deduced from the dispersion curve in
Fig. 14 and the corresponding equifrequencies in Fig. 15. It
could be that only one-half of the waves are transmitted and
hence contribute toward the image.

D. Analytical estimates for square cylinders
with nearly touching vertices

Let us also note that some of the dispersion curves in Fig.
14 are reasonably approximated by resonances for a square
water tank. In this case, the reduced potential � satisfies the
Helmholtz equation �17� in a square domain �= �0, l�2 and it
is supplied with Neumann boundary conditions on its bound-
ary ��. Looking for nontrivial eigenfields � of finite energy
in �, the resolvent of the operator associated with this spec-
tral problem is compact, hence its spectrum consists of a
countable set of positive eigenvalues. Using separation of
variables, these eigenvalues 	 straightforwardly satisfy

	 =


l
�n2 + m2, �n,m� � N2 \ ��0,0�� , �43�

and their associated eigenfield is written as

��x1,x2� = �0 cos�n

l
x1	cos�m

l
x2	 , �44�

where �0 is a constant field. Taking l=0.7071 in �43�, we can
see that the first eigenvalue 	0

�1�= /0.7071 and the next two
ones are 	0

�2�=�2 /0.7071 and 	0
�3�=�4 /0.7071. Assuming

that the length l is in millimeters, this in turns gives us the
water waves frequencies f0

�1�=11.62 Hz, f0
�2�=15.13 Hz, and

f0
�3�=20.69 Hz. These frequencies are reported as horizontal

dotted lines in Fig. 14. One can see that f �1� corresponds to
the second and third dispersion curves �indeed this eigenfre-
quency has a degeneracy of order 2 since it corresponds to
pairs �m0 ,n0�� ��0,1� , �1,0���. We note that it gives an ac-
curate estimate for the upper edge of the first gap lying
within the frequency range �6.5 Hz, 11.5 Hz�. The next
eigenfrequency f �2� is a reasonable approximation for the fre-
quency of the �nondegenerated� trapped mode sitting inside
the second gap in the frequency range �13 Hz, 20.5 Hz�. As
for f �3� it provides a reasonable approximation for the eigen-
frequency of the localized mode sitting right on the upper
edge of the second gap. We numerically checked that the
next frequencies of the water tank of side length l0
=0.7071 mm provide us with the location of the next gaps
and trapped modes �with one trapped mode per gap�. Never-
theless, we were not able to catch up with the lower edge of
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FIG. 15. �Color online� Isofrequencies corresponding to disper-
sion curves of Fig. 14.

FIG. 16. Water-wave lensing for a source set at a frequency 5.35
Hz through an array of 212 square cylinders of side length 8.4 mm
which are rotated by  /2. The pitch of the array is 10 mm.
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the very first gap since we did not find an accurate estimate
for the acoustic band �the first dispersion curve�.

We numerically observe that frequencies of localized
modes of the checkerboard lens are well approximated not
only by that of a water tank of side length l0=0.7071 mm
but also by that of a water tank of side length l1=0.5 mm
�from now on we drop the unit of length for the sake of
simplicity, assuming that all lengths are in millimeters for the
applications we have in mind�. Indeed, when we compare the
corresponding dotted and starred horizontal lines in Fig. 14,
we can see that they are fairly close to each other. It is even
apparent from the diagram in Fig. 14 that the second eigen-
frequency of the water tank of side length l1 provides a better
approximation of the fourth dispersion curve. We nonethe-
less note that the first localized eigenfrequency is not caught
by that water tank. It is actually obvious from �43� that water
tanks of side length lp=1 /2p, where p is a strictly positive
integer, will never catch up to that frequency.

We will show in the sequel that except for this fundamen-
tal mode of the cavity of side length l0=0.7071 mm, any
other mode will have its counterpart in a water tank of side
length lp=1 /2p. We note that all of these water tanks can be
considered as building blocks of an infinite checkerboard
whose filling fraction of cylinders in water is obviously one-
half �see Fig. 12�: Such a structure is self-similar under a
scaling of one-half, hence any square cell of side length lp
such that lp=1 /2p gives rise to a checkerboard which is iso-
morphic to the checkerboard with a square cell of side length
l0=0.7071 mm, as transpires from Figs. 12�a�–12�f�.

This suggests that we should be able to establish that the
spectrum �0 of the checkerboard with cells of side length l0
can be identified with the union of the spectra �p of all
checkerboards with cells of side length lp=1 /2p and side
length �2lp=1 /2p−1/2:

�0 = �
p=1

�

��p � �2�p� . �45�

Such result bears some resemblance with Keller’s theorem
for effective properties of high contrast checkerboards �30�.

In the present case, the statement comes down to show
that there always exists an integer p�1 such that

	p = 	0 or �2	p = 	0, �46�

where 	p and 	0 are eigenvalues, respectively, for the cavi-
ties of side lengths 1 /2p and l0�0.7071. From �43�, this
means the following arithmetic constraint should be satisfied
for a given p�N \ �0�:

1

22p−1 =
lp
2

l0
2 =

np
2 + mp

2

n0
2 + m0

2 , �47�

where �m0 , mp , n0 , np��N4 \ ��0,0 ,0 ,0��. We first note
that when p is large, n0

2+m0
2 should be much larger than np

2

+mp
2. Furthermore, n0

2+m0
2 should be an even number. Hence,

finding integers satisfying the constraint �47� is not trivial.
For the sake of illustration, let us look at the first few

possible solutions. For instance, taking p=1 in �47�, we
should find �m0 , m1 , n0 , n1��N4 \ ��0,0 ,0 ,0�� such that

n0
2 + m0

2 = 2�n1
2 + m1

2� . �48�

Clearly, there exists no pair �m1 ,n1� such that �48� is sat-
isfied for �m0 ,n0�� ��0,1� , �0,3� , �1,0� , �1,2� , �2,1� , �2,3� ,
�3,2��. On the contrary, there exist �nonunique� pairs
�m1 ,n1��N2 such that �48� is satisfied for �m0 ,
n0�� ��0,2� , �1,1� , �1,3� , �2,0� , �2,2� , �3,0� , �3,1� , �3,3��.
Hence, one can see that it is not enough to consider p=1 in
�47� to recover all pairs of integers �m0 ,n0� associated with
the spectrum �0 from the pairs �mp ,np� associated with the
spectrum �p. As suggested by the above discussion, identi-
fying �0 with �p involves a lacunary process. Giving fine
estimates for the distribution of integers m0 , n0 ,mp , np sat-
isfying �47� is a task which falls into the topic of number
theory.

But for the present analysis it is enough to note that we
are ensured of the existence of pairs of integers �n0 ,m0�,
�np ,mp� satisfying �47� for a given integer p�1, since only
squares of integers are involved on the right-hand side of
�47� and also since 1/2 is a �not continuous� fraction �31�.
Summing over p in both sides of �47�, we thus obtain

�
p=1

�

�np
2 + mp

2� =
2

3
�n0

2 + m0
2� , �49�

since the sum �p=1
� lp

2 / l0
2=�p=1

� 1 /22p−1=2 /3. Noting that
�p=2

� 1 /22p−2=1 /3 puts an end to the proof of the proposition
�45�.

Let us recall that �45� is linked with Keller’s theorem for
effective properties of high contrast checkerboards. Interest-
ingly, Keller’s result holds true for more complex geometries
satisfying some mirror symmetry. It was generalized by
Dykhne �32� to checkerboards of finite conductivities �1 and
�2 �the effective conductivity is then given by ��1�2�, and
also to two-dimensional isotropic polycrystals. These results
were further extended to complementary media described by
heterogeneous anisotropic matrices of permittivity for the
case of dynamic effective properties in electromagnetism
�33�. Not surprisingly, in this last case the effective proper-
ties are no longer given in closed form but are deduced from
auxiliary problems of electrostatic type. Such results imply
that if a microstructure is not isotropic but is such that inter-
changing the phases produces the same effect as rotating the
structure by  /2, then the effective properties are isotropic
and the effective refractive index is unchanged. Interestingly,
Craster and Obnosov succeeded in getting effective proper-
ties of four phase checkerboards in closed form in the con-
text of conductivity �34�. Last, Babinet’s principle may well
still apply for such complex media �29�. Therefore, there is
room here for much more work on focusing effect for water
waves through complex structured �multiphases� lenses sat-
isfying certain mirror symmetries.

IV. CONCLUSION

We emphasize that our analysis encompasses also the im-
portant case of electromagnetic waves propagating in square
arrays of infinite conducting square cylinders, in s polariza-
tion �the Neumann boundary condition is a good approxima-
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tion for infinite conducting walls in the microwave regime�.
For this, one simply must take 	=
��r /c, where �r is the
relative permittivity of the matrix �equal to one for vacuum�
and c is the speed of light in vacuum. It also covers the case
of antiplane shear acoustic waves propagating through a
square array of square voids if we take 	=
�� /� where �
and � are, respectively, the density and shear modulus of the
matrix material. In this case, the Neumann boundary condi-
tion describes traction free bodies and the sound speed is c
=�� /�. For potential applications in tomography, we would
be looking for ultrasonic waves for instance. In a way similar
to the parallel drawn in �3� between Alice’s mirror and Pen-
dry’s perfect lens, we may push the parallel further between
our checkerboard lens and Alice’s checkerboard where the
white queen remembers events yet to come �from the future�:
If evanescent waves are enhanced in some way, the checker-
board lens may open a Pandora’s box containing some

acoustic, electromagnetic or hydrodynamic paradigms de-
pending upon the study. Potential applications range from
flat water lenses �counterpart of the Pendry-Veselago lens in
electromagnetism� to localization of water-wave energy �cf.
cloaking effect for a source radiating in the neighborhood of
a photonic crystal slab lens when AANR occurs�.
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